Welcome to IMNN's documentation! ================================ The information maximising neural network (IMNN) is a fitting algorithm for neural networks that aims to maximise the Fisher information of a training set to produce the most informative set of summaries about the model parameters of a generative model of some target data. In particular, an IMNN can extract, asymptotically losslessly, information from complex distributed data in a :math:`d`-dimensional space and map it to some normally distributed summaries in a :math:`n_\rm{params}`-dimensional space, where :math:`n_\rm{params}` is the number of parameters in the generative model for the data. |doc| |pypi| |bit| |git| |doi| |zen| .. toctree:: :maxdepth: 2 :caption: Contents: pages/details pages/install pages/examples pages/modules pages/parents pages/tf.data.Datasets pages/lfi Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search` .. |doc| image:: /_images/doc.svg :target: https://www.aquila-consortium.org/doc/imnn/ .. |pypi| image:: /_images/pypi.svg :target: https://pypi.org/project/IMNN/ .. |bit| image:: /_images/bit.svg :target: https://bitbucket.org/tomcharnock/imnn .. |git| image:: /_images/git.svg :target: https://github.com/tomcharnock/imnn .. |doi| image:: https://zenodo.org/badge/DOI/10.1103/PhysRevD.97.083004.svg :target: https://doi.org/10.1103/PhysRevD.97.083004 .. |zen| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1175196.svg :target: https://doi.org/10.5281/zenodo.1175196